Outline

- The STEMI Myth: Coronary Occlusion and High-Risk EKGs that Require Reperfusion

 ▼ ResusReview.com
 - Cardiology
 - Critical Care
 - ECMO

 ▼ Beware dichotomies
 - Nothing in biology follows rules like 1 vs 2 mm
 - Dichotomies are false
 - ACC/AHA want you to believe STEMI vs NSTEMI

 ▼ Thrombi are active process
 - forming/dissolving
 - Always changing

 ▼ Occlusion vs Obstruction
 - STEMI = coronary occlusion
 - NSTEMI = MI without occlusion/subendocardial ischemia

 ▼ How sensitive STE for occlusion
 - 70-75%
 - Even worst after arrest

 ▼ Ruled in NSTEMI
 - 25% with occluded infarct, worse outcomes

 ▼ High risk NSTEMI
 - There is a spectrum from NSTEMI to STEMI
 - Especially the NSTEMI with high-risk features
There is a spectrum from NSTEMI to STEMI, especially the NSTEMI with high-risk features. Reperfusion depends not on mm criteria but is there a life-threatening thrombus in vessel?

Conditions
- Non diagnostic ECG, +troponin and ongoing pain
- Isolated typical angina, refractory
- Subtle ischemic STE
- Hyperacute T waves

STEMI Mimics
- Cardiologists not familiar with

Dynamic ST segments and T waves
- Indicates a thrombus that is propagating and lysing
- High risk

STEMI Equivalent
- Active cath lab — acute thrombosis in a coronary artery causing persistent ischemia that is refractory to medical management

Optimal timing for NSTEMI (EUSocCard)
- Patients at very high risk
 - Refractory angina
 - Severe heart failure
 - Life threatening ventricular arrhythmias
 - Hemodynamic instability
 - “Were not included in RCTs, in order not to withhold potentially life-saving treatment”

 “Such patients may have evolving MI and should be taken for invasive evaluation (<2H) regardless of ECG or biomarker findings”
 - You can do it just on your clinical suspicion
 - ACC/AHA 2014 says the same thing

AHA/ACC 2013 Guidelines for Reperfusion
True posterior MI or STE in AVR

Easy to dx low risk NSTEMI by troponin

TIMACS (NEJM 2009)

- NSTEMI randomized to early or routine PCI
- No difference in death/MI/stroke
- Grace >140 better with early PCI
- Early vs 16 vs 52 hours — Need 2 hours

What DO WE Do

Serial ECGs

- Real ischemia always evolves (though may be slowly)

Echocardiogram

- Absence of new wall motion abnormality with high quality contrast echo, read by an expert, essentially rules out transmural ischemia

But

- Absence of WMA in ischemic ST depression

Proportionality

Know your ECGs

Hyperacute Tawws

STEMI Mimics

- LVH

BER

- QTc, STE in V3, and R-wave in V4

LBBB

- New LBBB
 - Downgraded
 - Sgarbossa Criteria
 - Smith-Modifications Sgarbossa Criteria
Isolated Posterior MI

- Posterior wall MI usually occurs along with lateral or inferior wall (RCA or LCX occlusion)
- Posterior wall not directly imaged by standard 12-lead
- But also not electrically silent

Posterior ischemia is seen as reciprocal changes in anterior leads, V1-V4

- Horizontal flat STD, prominent R waves and upright T-waves
- r/S ratio >1 in V2
- These are analogs of anterior STE

Demand ischemia is MUCH more likely than occlusion

- Especially when in V4-V6
- Older patient
- CAD
- Severe supply demand mismatch (tachycardia, anemia, hypoxia, HOTN)

Obtain posterior ECG

- 0.5mm meets STE criteria because of distance to heart

Wellens Syndrome

- Spontaneous reperfusion of LAD occlusion with resolution of chest pain

Two forms

- Anterior biphasic T-waves
- Deeply inverted T-waves with preserved R waves
- Troponins may not be positive depending on time that artery was occluded

Mimics include LVH, severe HTN, benign T-wave inversion

New WMA would have good positive-predictive value

Given the presence of LAD lesion, provocative testing may be disastrous
Anterolateral Wall MI
- Occlusion of branches form the LAD can present with nonclassical noncontiguous STE
- First diagonal (D1) or RI can be a large vessel that perfuses large parts of the anterolateral myocardium
 - Often a target of CAB because of their size
 - Produces STE in aVL and V2 along with upright T-waves and inferior STD with inverted T-waves
 - These are noncontiguous, but mainly due to our simplified visualization of the heart in the thorax
 - This occlusion requires reperfusion

aVR ST Elevation
- aVR lead was developed to evaluate basal segment of septum
- STE seen in two situations
 - Proximal LAD occlusion
 - With diffuse LAD depression
 - LM/LAD insufficiency
 - Severe multi-vessel disease
 - Develop with ACS or supply-demand mismatch (hemorrhage, tachycardia, hypoxia, hypotension)

De Winter
- Total or subtotal occlusion of proximal LAD
 - 2% of cases
- Characterized
 - 1-3mm up-sloping STD after the the J-point in the anterior leads V1-V4
 - Tall positive symmetric T waves
 - Normal QRS
 - Loss of R-wave progression
- 1-2mm STE in aVR
- Probably, but clearly related to K-ATP cardiac channel mutation

▷ Two forms
- Total occlusion, stable ECG features until reperfusion
- Dynamic, seen with subtotal occlusion
- Both require immediate reperfusion

▷ Pseudo-normalization
- Reocclusion of LAD in setting of T-wave inversion results in upright T-waves
 - i.e. Inverted Wellens waves
- These are not normal T-waves, but occluded vessels requiring reperfusion therapy